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Abstract

In this paper, we present and analyze a novel regularizationnique based on enhancing our dataset with corrupted
copies of the original data. The motivation is that since lg@ning algorithm lacks information about which parts loé t
data are reliable, it has to produce more robust classificdtinctions. We then demonstrate how this regularizatéaus
to redundancy in the resulting classifiers, which is soméwhaontrast to the common interpretations of the Occan¥sra
principle. Using this framework, we propose a simple additio the gentle boosting algorithm which enables it to woithw
only a few examples. We test this new algorithm on a varieyadésets and show convincing results.
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1. Introduction

Boosting - the iterative combination of classifiers to buaild
strong classifier - is a popular learning technique. The al-

of overfitting(learning to deabnly with the training error).
Therefore, while the empirical error is small, the expected
error is large. In other words, thgeneralization errofthe
difference of empirical error from expected error) is large

gorithms based on it, such as AdaBoost and GentleBoostOverﬁtting can be avoided by using any one of severg

are easy to implement, work reasonably fast, and in genera
produce classifiers with good generalization properties fo
large enough datasets. If the dataset is not large enough a

n
there are many features, these algorithms tend to overfit ancg

perform much worse than the popular Support Vector Ma-
chine (SVM) algorithm. SVM can be successfully applied
to all datasets, from small to very large.

The major drawback of SVM is that it uses, at run time,
when classifying a new example all the measurements
(features) ofx. This poses a problem because, while we
would like to cover many promising features during train-
ing, computing all the features at run-time might be too
costly. This is especially true for object detection praofxe
in vision, where we often need to search the whole image
in several scales over thousands of possible locationh, eac
location producing one such vector While several ap-
proaches for combining feature selection with SVM have
been suggested in the past (e.g., [17]), they are rarely. used

The complexity of the feature vector can be controlled

more easily by using boosting techniques over weak classi-

fiers based on single features (e.g., regression stumgs), su
as in the highly successful system of [16]. In this case, the

number of features used is bounded by the number of itera-

tions in the boosting process. However, since boostingstend
to overfit on small datasets, there is a bit of a dilemma here.
An ideal algorithm would enable good control over the to-
tal number of features, while being able to learn from only
a few examples. Such an algorithm is presented in Sec. 5.

This new algorithm is based on GentleBoost. Within it
we implemented a regularization technique based on a sim
ple idea: add corrupted copies of your training datasetdo th
original one, and the algorithm will not be able to overfit. A
general background on fitting and regularization is given in
the next section.

2 Background

We are given a set of examples:; = {(z;,v:)}1-1, = €
X,y € Y drawn from a joint distributior® on X x ).
The ultimate goal of the learning algorithm is to produce a
functionf : X — ) such that thexpected erroof f given

by the expressiol(, ,).»(f(z) # y) is minimized. The

hlarizationtechniques.

Overfitting is usually the result of allowing too much
eedom in the selection of the functigh Thus, the most
asic regularization technique is to limit the number oéfre
parameters we use while fitting the functign For exam-
ple, in binary classification we may limit ourselves to learn
ing functions of the formf(z) = (hTx > 0) (we assume
X = R". his a vector of free parameters). Using such
functions, we reduce the risk of overfitting, but may never
optimally learn thetarget function(i.e., the “true function”
f(x) = y that is behind the distributioR) of other forms,
e.g., we will notbe able to learf(z) = (x(1)2—z(2) > 0).

Another regularization technique is to minimize the em-
pirical error subject to constraints on the learned fumsio
For example, we can require that the norm of the vector of
free parameters be less than one. A related but different
regularization technique is to minimize the empirical erro
together with a penalty term on the complexity of the func-
tion we fit. The most popular penalty ternmilikhonov reg-
ularization— has a quadratic form. Using the linear model
above, an appropriate penalty function would| |33, and
we would minimized_;_, (h"z; > 0) # v;) + ||h|[3.
Sometimes, adding a regularization term to the optimiza-
tion problem solved by the algorithm is not trivial. In the
most extreme case, the algorithm is a black box we cannot
alter at all. Still, a simple form of regularization calledise
injection can be employed. In the noise injection technique
the training dataset is enriched by multiple copies of each
training data point;. A zero-mean, low-variance Gaussian

noise (independent for each coordinate) is added to each
copy, and the original labej; is preserved. The motivation

is that if two data pointg, 2’ are close (i.e.||z — /|| is
small), we would likef (x) and f(z’) to have similar val-
ues. By introducing many examples with similaralues,

and identicaly values we teach the classifier to have this sta-
bility property. Hence, the learned function is encouraged
to be smooth (at least around the training points).

The study of the noise injection technique, which blos-
somed in the mid 90’s, established the following results on
noise injection: (1) It is an effective way to reduce gener-
alization error. (2) It has a similar effect on shrinkagee(th
statistical term for regularization) of the parametersome

boolean expression inside the parentheses evaluates to orgmple models (e.g., [3]). (3) It is equivalent to Tikhonov

if it holds, zero otherwise.

Since we do not know the distributid? we are tempted
to minimize theempirical error given by """, (f(z;) #
yi). The problem is that if the space of functions from which
the learning algorithm selectsis too large, we are at risk

regularization [1]. Note that this does not mean that we can
always use Tikhonov regularization instead of noise injec-
tion, as for some learning algorithms it is not possible to
create a regularized version.

The technique we introduce next is similar in spirit to



Input: (z1,y1), -, @m,ym) Wherez; € R",y; € Y. cessity” - is often understood as suggesting the selection
Output: one synthesized pait:(9). of the simplest possible model that fits the data well. Thus,
given a dataset, we are encouraged to prefer clasdifieat
uses70 features over classifigB that usess5 if they have

the same expected error, because the “simpler” classifier is
believed to generalize better.

In an apparent contrast to this belief, we know from our
Replace featurk of 2: &(k) < @ (k). daily experience that simpler is not always better. When a
good teacher explains something to a class, he will use a
lot of repetition. The teacher ensures that the students wil
Figure 1:The Feature Knockout Procedure understand the idea, even if some of the explanations were
unclear. Since the idea could be expressed in a simple form
without repetition, the explanation is more complex.

Select two examples,, =, at random.
Select a random featukec [1..n].

Sett «+— z, andy «— yq.

P wnh PR

noise injection. However, it is different enough that the re
sults obtained for noise injection will not hold for it. For-e ] ] )
ample, the results of [1] use a Taylor expansion around the 't iS also generally accepted that biological systems use
original data points. Such an approximation will not hold rédundancy in their computations. Thus, even if several
for our new technique, since the “noise” is too large (i.e., computational units break_dov_vn (e.g., when a neurons die)
the new datapoint is too different). Other important preper the result of the computation is largely unaffected. We ex-
ties that might not hold are the independence of noise acros®€ct the learned model to be interpreted with some random
coordinates, and the zero mean of the noise. error. In these cases, we should not train a single model, but
Our regularization technique is based on creating cor- instead train to optimize a distribution of models.
rupted copies of the dataset. Each new data point is a Redundancy in boosted classifiers.Boosting over a
copy of one original training point, picked at random, where weak classifier increases the weights of those examples it
one random coordinate (feature) is replaced with a differen does not classify well. The inclusion of a weak classifier
value—usually the value of the same coordinate in anotherin the strong classifier therefore inhibits future use of-sim
random training example. The basic procedure used to genilar weak classifiers. In boosting over regression stumps,
erate the new example is illustrated in Fig. 1. We call it the €ach weak classifier is based on one feature. Hence, from
Feature Knockout (KO) procedure, since one feature value@ group of similar features, we may expect to see only one
is being altered dramatically. It is repeated many times to participating in the strong classifier. Our boosting over re
create new examples. It can be used with any learning al-gression stumps algorithm, presented in Sec. 5, modulates
gorithm, and we use it in the analysis presented in Sec. 4 this effect, by creating a new example for which relying on
However, as we focus our application emphasis on boost-the selected feature might lead to a mistake. However, it
ing, we use the specialized version in Fig. 2. does not change the values of the other features, making the
The KO regularization technique is especially suited for similar features suitable for classifying the new example.
use when learning from only a few examples. The robust-  Such a process yields a larger classifier, which uses more
ness we demand from the selected classification functionfeatures. This effect is clear in our experiments, and might
is much more than local smoothness around the classifi-also be interpreted as “a more complex model is needed to
cation points (c.f. noise injection). This kind of smooth- deal with more complex data.” However, using more fea-
ness is easy to achieve when example points are far frontures does not necessarily mean that the classifier will lead
one another. Our regularization, however, is less resteict  to a worse generalization erfor
than demanding uniform smoothness (Tikhonov) or requir-  Koltchinskii and Panchenko have derived bounds on the
ing the reduction of as many parameters as possible. Bothgeneralization error of ensemble (voting) classifiershsuc
of these approaches might not be ideal when only a few ex-as boosting, which take redundancy into consideration [10]
amples are available because there is nothing to balance & precise description of their results would require the in-
large amount of uniform smoothness, and it is easy to fit atroduction of more notation, and will not be presented here.
model that uses very few parameters. Instead, we encouragghformally speaking, they show that one can refine the mea-
redundancy in the classifier since, in contrastto the sherta sures of complexity used for voting classifiers such that
of training examples, there is an abundance of features. it would encourage ensembles that can be grouped into
a small number of compact clusters, each including base

. . (“weak”) classifiers that are similar to one another.
3 Motivation

.. . . . . 1The terms “simple” and “complex” are not trivial to define daimeir
Intuition. It is a common belief that simpler is bettédc- definition usually depends on what one tries to claim. In tivet Section

cam’s razor- “entities should not be multiplied beyond ne- we will use more rigorous definitions for the cases we analyze



4 Analysis

The effect of adding noise to the training data depends onis the diagonal matrix with the entrig3;;, =

the learning algorithm used, and is highly complex. Even

this system using Tikhonov regularization is termed “sdale
Tikhonov regularization.” IfD is unknown, a natural choice
(AAT) g,
[13]. We will now show that using the knockout procedure

for the case of adding a zero-mean, low-variance Gaussiaro add many new examples is equivalent to scaled Tikhonov

noise (noise injection) this effect was studied only forsim
ple algorithms (e.g. [3]) or the square loss function [1].
In Sec. 4.1 we study the effect of Feature Knockout on

regularization, using the weight matrix above.

Lemma 1 When using the linear model with a least

the well known linear least square regression problem. Wesquares fit, applying the knockout procedure in Fig. 1 to
show that it leads to a scaled version of Tikhonov regular- generate many examples is equivalent to applying scaled

ization. Compare this to Bishop’s result (using a Taylor ex-
pansion) that noise injection is equivalent to Tikhonowreg
larization. Following in Sec. 4.2, we will try to analyze how
feature KO affects the variance of the learned classifier.

4.1 Effect of feature KO on linear regression

Tikhonov regularization wher®y, = /(AAT ).

Proof For simplicity of the proof, we will make the fol-
lowing two assumptions: (1) All features have an expecta-
tion of 0. Without this assumption, our derivations below
will be cluttered with many more elements. (2) Instead of
sampling using the knockout procedure, we will just use an

One of the most basic models we can apply to the data isaugmented data matrix containing all of the points that the

the linear model. In this model, the input examplgse
R™ i = 1..m are organized as the columns of the matrix
A € R™*™; the corresponding; values are stacked in one
vectory € R™. The prediction made by the model is given
by AT h, whereh is the vector of free parameters we have
to fit to the data. In the common least squares cgge;

AT hl|? is minimized.

In the case that the matriA is full rank and overdeter-
mined, it is well known that the optimal solution is =
Aty, whereAt = (AAT)~1 A s known as the pseudo in-
verse of the transpose df (our definition ofA is the trans-
pose of the common text book definition). Afis not full
rank, the matrix inverse4A™)~! is not well defined. How-
ever, as an operator in the rangett is well defined, and
the above expression still holds, i.e., even if there is an am
biguity in selecting the inverse matrix, there is no amhtigui

in the operation of all possible matrices on the range of the

columns ofA, which is what we care about.

Even so, if the covariance matritA ™) has a large con-
dition number (i.e., it is close to being singular), smali-pe
turbations of the data result in large changes tand the
system is unstable. The solution fits the ddtavell, but
does not fit data which is very close t, hence there is
overfitting. To stabilize the system, we apply regularati

Tikhonov regularization is based on minimizing —
ATh||? + A||r||%. This is equivalent to using a regularized
pseudo inverseA} = (AAT + A)~'A, wherel is the
identityn x n matrix, and\ is the regularization parameter.

knockout procedure can create. This is equivalent to study-
ing the limit of infinite new examples, and allows us to ig-
nore all the elements that go to zero as the number of virtual
examples increases.

The vectorh which is fitted by means of a scaled
Tikhonov regularization technique, with a parameieis
givenby:h = AT(AAT 4+ \I)"'Ay =
(D7'AATD ' + AD7ID?D"1)"1D 1Ay =
D(AAT +AD*)7'DD~'Ay = D(AAT + \D?)"' Ay.
Thereforep, = D~'h = (AAT + AD?)~1 Ay.

Now considerA, the matrix whose columns contain
all the possible KO examples, together with the original
data points. Let; be the corresponding labels. By ap-
plying a least square linear fit to these inputs, we find:
h = (AAT)"1Aj. There arenm? total examples cre-
ated. Since we assumed all features have a mean of zero,
all the knockout values of each feature cancel out. What
remains ism(n — 1) exact copies of each variable and
Ay =m(n —1)Ay.

We now examine the elements of the matdid ™. The
off diagonal elements represent the dot product between two
different variables. Each variable holds either its orgjin
value, or a different value, but it may never happen that both
contain the knockout values at once. It happer{s — 2)
times for each input example that both features hold the
original data sets. The rest of the cases average out to zero,
because while one value is fixed the other value goes over

is badly scaled, e.g., one variable is much larger in magni- Pecause of symmetry, each value appeargimes, making

tude than the other variables. In order to rectify this, wg ma
apply a transformation to the data that weights each variabl
differently, or equivalently weight the vectérby applying
a diagonal matrixD, such that, becomes, = Dh.

Instead of solving the original systedv = y, we now
solve the systemih, = y, whereA = D~'A. Solving

the diagonahm times the diagonal of the original matrix.
Putting it all together:h = (AAT)"'Aj = (m(n —
2)AAT +2mD?) " 'm(n—1)Ay = 2=L(AAT + AD?) Ay,
where) = % The leading fraction does not change the
sign of the results, and is close to one. Ignoring it, we obtai
the results of a scaled Tikhonov regularization. The param-



eter) can be controlled by allowing the knockout procedure  Similar to the work done on noise injection, we exam-
to perturb more than one element.|j ined the effect of our procedure on a simple regression tech-
nigue. We saw that feature knockout resembles the effect of
To get a better understanding of the way Feature Knock-scaled Tikhonov regularization, i.e., high norm featunes a
out works, we study the behavior of scaled Tikhonov regu- penalized by the knockout procedure. However, boosting
larization. As mentioned in Sec. 3, in the boosting case, theover regressions stumps seems to be scale invariant. Mul-
knockout procedure is expected to produce solutions whichtiplying all the values of a feature by some constant does
make use of more features. Are these models more com-ot change the resulting classifier, since the process that fi
plex? This is hard to define in the general case, but easy tahe regression stumps (see Sec. 5) uses the values of each
answer in the linear least square case study. feature to determine the thresholds that it uses. However, a
In linear models, the predictionson the training data  closer look reveals the connection between scaling and the
take the form:y = Py. For example, in the unregularized effect of the knockout procedure on boosting.
pseudo inverse case we have- ATh = AT(AAT)~! Ay, Boosting over stump®.g., [16]) chooses at each round
and therefore® = AT(AAT)~1A. There is a simple mea- one out ofn features, and one threshold for this feature.
sure of complexity calledhe effective degrees of freedom The thresholds are picked from the possible values that
[8], which is justTr(P) for linear models. A model with  exist in between every two sorted feature values. The fea-
P = I (the identity matrix) has zero training error, but may ture and the threshold define a “weak classifier” (the basic
overfit. In the full rank case, it has as many effective degiree building blocks of the ensemble classifier built by the beost
of freedom as the number of featur&s-(P) = n). ing procedure [14]), which predicts -1 or +1 according to
the threshold. Equivalently, we can say that boosting over
Lemma 2 The linear model obtained using scaled stumps chooses from a setwofn binary features — these
Tikhonov regularization has a lower effective degree of features are exactly the values returned by the weak classi-
freedom than the linear model obtained using unregularized fiers. Theseumn features have different norms, and are not
least squares. scale invariant. Let us call each such featureanfeature.
Using the intuitions of the linear least squares case, we
Proof This claim is very standard for Tikhonov regular- would like to inhibit features of high magnitude. Adn-
ization. Here we present a slightly more elaborate proof. features have the same norny/(m)), but different en-
Using the same rules we can prove other claims, such agropies (a measure which is highly related to norm). These
the claim that the condition number of the matrix we invert entropies depend only on the ratio of positive values in each
using scaled Tikhonov regularization is lower than the one nm-feature - call this ratig.
achieved without regularization. A lower condition number  Creating new examples using the Feature Knockout pro-

is known to lead to better generalization. cedure does not change the number of possible thresholds,
For scaled Tikhonov regularization we haye= Py and therefore the number of features remains the same. The
whereP = AT(AAT + AD?)~'A. ThereforeT'r(P) = values of the new example in then feature space will be
Tr(AT(AAT + AD*)7'A) = Tr((DD 'AA'D™'D + the same for all features originating from the— 1 fea-
AD?)T'AAT) =Tr((D(D7*AATD™' + A\I)D) ' AAT) = tures that were not changed in the knockout procedure. The
Tr(D Y (D 'AATD '+ X)7'D71AAT) = value for a knocked-out feature (featuren Fig. 1), will
Tr(D7'AATD™ ' + AI)"'DPAATD™Y) = change if the new value is on the other side of the thresh-
Tr((EET +XI)"'EET), whereE = D" A. old as compared to the old value. This will happen with

Let USVT = E be the Singular Value Decompo- Pprobability2p(1 — p). If this sign flip happens then the fea-
sition of £, where S is a diagonal matrix, and/ and ture is inhibited because it gives two different classifimag

V are orthonormal matrices. The above trace is ex- to two examples with the same label (KO leaves labels un-
actly Tr((US?UT + X)"'US?UT. Let S* be the di- changed). Note that the entropy of a feature with a positive
agonal matrix with elements;, = S7, + ), then ratio of p and the probabilitp(1 — p) behave similarly:
USsUT + A\t = WUsUHYt = UsUT. both rise monotonically fob < p < 1/2 and then drop
The above trace becoméEr(US*—lUTUSQUT) — symmetrically. Hence, We obtain the following result:

w—1Q277T _ w—102) _ Sty
Tr(S*1S7UU) = Tr(S"15%) = Yygix < Lemma 3 Let ¢ be a singlenm-feature created by com-

rank(E) = rank(A). Compare this value with the effec-  pining a single input feature with a threshold. The amount
tive degrees of freedom of the unregularized least squarepf inhibition ¢ undergoes, as the result of applying feature

solution: Tr(AT(AAT)™'A) = Tr((AAT)TAAT) = knockout, grows monotonically with the entropyof
rank(A). The last equality also holds in the case where

A is not full rank, in which cas¢AAT)~! is only defined Hence, similarly to the scaling in the linear case, the
ontherange ofiA™. | knockout procedure inhibits high magnitude features (here



the magnitude is measured by the entropy). Note that in theoptimal and main predictionsB(z) = (f(x) # f«(x)).
algorithm presented in Sec. 5, a feature is used for knockoutThe variance V' (z) is defined to be the expected loss of
only after it was selected to be a part of the output classifier the prediction with regard to the main predictidid(z) =
Still, KO inhibits more weak classifiers based on these fea-E; .o () (f(z) # f(2)). These definitions allow us to
tures with higher entropies, making them less likely to get present the following observation:

picked again. It is possible to perform this higher-entropy

preferential inhibition directly on all features, thereg@im- ~ Observation 1 Let 50 be the set of all training- example-
ulating the full knockout procedure. The implementation of indices for which the biag(z;) is zero (the unbiased set).
this is left for future experiments. Let B1 be the set for whictB(xz1) = 1 (the biased set).

Then, >0 Esnox e (F(2) # wi) = 2% Blxi) +
ZieBO V(zi) — ZieBl V(i)

In the unbiased cas@(z) = 0), the variance¥ (z)) in-
Many training algorithms can be interpreted as trying to creases the training error. In the biased cd¥e:{ = 1), the
minimize a cost function of the formy_" , L(f(z:),v:), variance at point decreases the error. A functighwhich
where L is a loss function. For example, in tl1 loss minimizes the training cost function that was obtained us-
function L(f(z),y) = (f(z) # y), we pay 1 if the la-  ing Feature Knockout, has to deal with these two types of
bels are different, O otherwise. By applying the knock- variance directly while training. Define the net variance to
out procedure to generate more training data, an algorithmbe the difference of the biased variance from the unbiased:;
that minimizes such a cost function will actually minimize: a function trained using the Feature Knockout procedure is
> Escox@n)L(f(2),yi), whereCx (x) represents the  then expected to have a higher net variance than a function

4.2 Bias/variance decompositions

distribution of all knocked-out examples created from trained without this procedure. If we assume our corrup-
In the case of the square loss function tion procesx is a reasonable model of the robustness
L(f(z),y) = (y — f(x))?, the cost function can expected from our classifier, a good classifier would have
be decomposed (similarly to [9]) into bias and vari- a high net variance on thtesting dat&. The net variance
ance, respectively: > Eiocy @ L(f(2),y:) = measured in our experiments shows the effect of the Fea-
> L(Esmcx (o) (2), i) + ture Knockout approach. An interesting application that is
Yo B an) L0, Ez oy (o) F(2)). not explored in this paper is the exploitation of net var@anc

Consider the variance term. Since Feature Knock- to derive confidence baet a point (i.e., a measure of cer-
out changes dramatically the value of one of the fea- tainty in our prediction). Since Feature Knockout empha-
tures in the vectorz;, one can show that if the term Sizes these differences, it yields narrower confidence bars
> B @i L0, Ez oy (o) f(2)) is bounded, then
our learning algorithm has laounded differences property .

[12] which is equivalent to saying that by removing one of 5 The GentleBoostKO algorlthm

the features, the value of the learned functjpmvill not ) o o
change by more than a bounded amount. Consider a situYVhile our regularization procedure can be applied, in prin-
ation (which exists in our object recognition experiments) CiPle, to any learning algorithm, using it directly when the
where our features are pulled independently from a pool of "Umber of features is high might be computationally de-
many possible features. The bounded difference property™@nding. This is because for each one ofithgaining ex-
guarantees that with high probability the testing erroree g 2MPIes, as many agm — 1) new examples can be created.
is close to the expectation of the testing error with regards COvering even a small portion of this space might require
to selecting another set of random features of the same sizeln€ creation of many synthesized examples.

The formal discussion of these results, which follows the ~ The randomized procedure in Fig. 1 samples this large
lines of [2] is omitted. space of synthesized training examples. Still, if there are

» many features, the sampling would probably be too sparse.

However, for some algorithms our regularization tech-
nigue can be applied with very little overhead. For boost-
ing over regression stumps, it is sufficient to modify those
features that participate in the trained ensemble (i.esah
features that actually participate in the classification).

The basic algorithm used in our experiments is specified
in Fig. 2. It is a modified version of the GentleBoost algo-

Let us now turn our attention to another “bias-variance
decomposition. Consider one based on@}i¢ loss func-
tion, as analyzed in [4]. We follow the terminology of [4]
with a somewhat different derivation, and for the presen-
tation below we include a simplified version. Assume for
simplicity that each training example occurs in our dataset
with only one label, i.e., ift; = z; theny; = y;. Define
theoptimal predictionf. to be the “true” label, (z;) = y;.
Define themain predictiorof a functionf to be just the pre- 2We omit the formal discussion on the relation between vagaon
diction f(z). Thebiasis defined to be the loss between the training examples, and variance on testing examples.




Input: (x1,51), -y @m,ym) Wherez; € R",y; € Y = +1.
Output: Composite classifieH (x).

1. Initialize weightsw; < 1/m.
2. fort=1,2,3,..T.
(a) For each featuré, fit a regression functiorfﬁk)(x)

by weighted least squares gnto x; with weightsw;,
i=1.m+t—-1

(b) Letk,,.n be the index of the feature with the minimal
associated weighted least square error.

(c) Update the classifigl (z) — H(z) + f{Fmin)
(d) Use Feature KO to create a new example;

Select two random indices< a,b < m
Tm+t < Ta
Im+t(kmin) — mb(kmin)
Ym+t < Ya
(e) Set new example weight,,+ to that of its source:
w7n+t — Wqa
(f) Update the weights and normalize:
(kmin)
fi @) j=1.m+t
wi = wi/ Y wi

3. Output the final classifiell (x)

w; — wie ¥t

Figure 2: The GentleBoostKO Algorithm. Steps d and e
constitute the differences from the original GentleBoost.

the update of the weights of all examples (including the new
one), and a new round of boosting begins. This iterative pro-
cess finishes when the weights of the examples converge,
or after a fixed number of iterations. In our experiments,
we stopped the boosting after 100 rounds—enough to ensure
convergence in all cases.

6 Experiments

UCI repository experiments. We evaluated our methods
on 10 UCI repository datasets that are suitable for binary
classification, either by thresholding the value of theearg
function (e.g. the price in the housing dataset) at its me-
dian, or by picking a label to be the positive class. Thése
datasets were: arrhythmia, dermatology, e-coli, glasathe
housing, letters, segmentation, wine, and yeast.

We have split each dataset randomly into 10% training,
90% testing, and ran each of the following classifiers: Gen-
tleBoost, GentleBoostKO (Fig. 2), AdaBoost, AdaBoost
with a knockout procedure (similar to GentleBoostKO), and
linear SVM. We also ran linear SVM on a dataset that
contained100 examples generated in accordance with the
knockout procedure of Fig. 1. SVMs with different nonlin-
ear kernels produced either similar or worse results. Iiradd
tion, we report results for GentleBoost combined with noise
injection (the algorithm that adds gaussian noise to the ex-
amples), with the best noise variance we found. By select-
ing results according to the performance on the testing data
the noise injection results were biased, and should only be
taken as an upper bound for the performance of noise injec-

rithm [7]. GentleBoost seems to converge faster than Ad- io Tab. 1 shows the results, averaged over 10 independent
aBoost, and performs better for object detection problems, ns.

[15]. At each boosting round, a regression function is fit-

In this table we measured the mean error, the standard

ted (by weighted least-squared error) to each feature in thegeyiation of the error, and the number of features used by
training set. We used linear regression for our experiments ine classifiers (SVM always uses the maximal number of

fitting parameters, b andth so that our regression func-
tions are of the forny (z) = a(xz > th) + b. The regression

features). We also measure the variance over a distribu-
tion of knockout examples for correct classifications (un-

function with the least weighted squared error is added t0pjased variance), and incorrect classifications (biased va

the total classifief (z) and its associated featur,(;,,) is
used for Feature Knockout (step d).

ance) (Sec. 4.2). This variance was computed in the follow-
ing way: for eachtesting example we generated 50 knock-

In the Feature Knockout step, a new example is createdout examples (Fig. 1), and computed the variance over these

using the class of a randomly selected examplend all
of its feature values except for the valué:af;,,. The value

50 examples. We averaged the variance over all biased and
unbiased testing examples. A good classifier produces more

for this feature is taken from a second randomly-selectedvariance for incorrectly classified examples, and onlytkelit

exampler,. The new example,, . is then appended to the
training set. In order to quantify the importance of the new

variance for correctly classified ones.
It is apparent from the results that: (1) In general the

example in the boosting process, a weight has to be assigne@inockout procedure (KO) helps GentleBoost, raising it to

to it. The weightw,,,,. of the new example is estimated by
copying the weight of the example from which most of the
features are takem:(). Alternatively, a more precise weight
can be determined by applying the total classifigfz) to
the new example.

the same level of performance as SVM. (2) KO seems to
help AdaBoost as well, but not always. It is not clear
whether knockout helps SVM. (3) KO seems to help in-
crease the net variance (which is good, see Sec. 4.2). (4) As
expected KO produces classifiers that tend to use more fea-

As with any boosting procedure, each iteration ends with tures. (5) KO shows different, mostly better, performance



than noise injection (GentleBoostNI). Dataset Algorithm Mean | Unbias  Biased Net| Feat.

H i ; Error Var. Var. Var. | Used
Visual recognition using the Ca_ltech datasets. We | —zerv—" 2025 7040 00l 0010000l 62
tested our GentleBoostKO algorithm on several Cal- AdaBKO 41.4%+4.3 | 0022  0.026 0.004 45.0
H Y H GentleB 40.0%+t7.0 0.100 0.130 0.030[ 43.8
tech object recognlthn datasets that were _pres.entej in ContloBKO | 373%:37 | 0042 0068 0036 552
[6]. In each experiment we had to distinguish he- GentleBNI 35.206£1.2 | 0.093 0137  0.044] 452
; o ; ; LinSVM 38.50%+3.5 | 0035 0046  0.011] 279.0
tween images contammg_an object. and background |im- LnsvMKo | 3929%ta9 | 0038 0050 0015 2790
ages that do not contain the object. The datasgtErm AdaB 47%E23 | 0042 0040 -0.002] 16
i i AdaBKO 21.8%+43.8 0.015 0.165 0.187( 174
Airplanes, Cars, Faces_, Leafs and Motorbikes, |as ContleB 36%e25 | 0651 0712 o006l 38
well as the background images were downloaded friom GentleBKO 1.7%+1.5 | 0018 0135 0.117 189
: Do ; GentleBNI 24%+0.4 | 0534 0607 0073 6.2
ht t_p. [/ www. vi si on. cal t_ech. eqlu/ . Fpr the ex LnSUM 08octo7 | 0013 0128 0118 340
periments we used the predefined splits (available to all the LinSVM KO 12%+1.0 | 0.012 0302 0.290| 34.0
[ AdaB T04%E58 | 0201 0451 0161 4.0
datasets but the Leafs dataset). For leafs, we used a randér- R o el B S e
split of 50% training and 50% testing. Note that since our GentleB 10.9%+5.9 | 0.546 0625 0.079 3.2
iseriminati i ihi GentleBKO 58%+14 | 0236 0540 0304 6.2
methods are discriminative, we needed a negative training oo Tonioo | oase 0914 0220 56
set. For this end, we remov8d random examples from the LinSVM 8.3%+3.3 | 0235 0483 0248 7.0
negative testing set, and used them for training. LinSVMKO | 68%+18 | 0253 0542 0289 7.0
i K GLASS AdaB 37.6%t7.4 0.272 0.296 0.024 54
To turn each image into feature-vectors we us@@ C2 AdaBKO 333%+7.0 | 0302 0337 0035 80
GentleB 34.8%+5.2 0.420 0.431 0.011 6.0
features. Thes_e extre_mely sgccessful fe_a_ture_s allow Us to ContleBKO | 306%409 | 0287 0320 0033 80
learn to recognize objects using few training images, and GentleBNI 33.6%+3.3 | 0.320 0343 0023 7.8
LinSVM 40.8%+2.8 0.238 0.250 0.013 8.0
the results seem to be comparable or better than Fhe re- LnSVMKO | 37969 | 0262 0986 0024 80
sults reported in [5]. The results are shown in Fig. [ 3HEART AdaB 245%E36 | 0139 0217 0078 62
H : AdaBKO 21.9%t4.4 0.148 0.319 0.171f 104
To compare w_lth previous work, we used the_ error at the GentleB 67ne2 | 0223 0342 o119 o8
equilibrium-point between false and true positives as pur GentleBKO | 23.9%t3.4 | 0191 0351  0.160] 12.6
_ H GentleBNI 26.7%t2.4 0.215 0.334 0.119| 114
error-measure. It is clear that for a few dozen examples, LnSUM 23856 | 0205 0314 0138 130
SVM, GentleBoost and GentleBoostKO have the same per- LINSVMKO | 24.2%t45 | 0.193  0.344  0.151] 13.0
ini hdHOUSING | AdaB 16.9%+1.8 0.138 0.192 0.054 4.6
formance level. However, for only a few training exgmpl(.éj' ASBKO 1670014 | 0156 0302 0148 106
GentleBoost does not perform as well as SVM, while Gen- GentleB 20.0%+3.9 | 0.243 0358  0.115 10.0
i GentleBKO | 17.6%+0.9 | 0175 0380  0.205 12.7
tleBoostKO gch|eves the same level of performance. ContleBNI 200011 | 0206 0361 0151 106
We also tried to apply Lowe’s SIFT features [11] to the LinSVM 21.2%+4.6 | 0.297 0454 0157 13.0
: LiNSVMKO | 17.1%+18 | 0254 0430  0.176 13.0
d f
same datasets, although th_ese features were de3|gnT dfot—ret70an 17 0%08 | 0.018 0062 0.044 46
a different task. For each image, we used Lowe’s biha- AdaBKO 11.4%+2.8 | 0040 0147 0107 9.4
; P ; GentleB 4.6%+0.9 | 0117 0577 0460 15.0
ries to comute the SIFT dgs_cnpuon of each key point. Ne ContleBKO 26%t06 | 0094 0551 0457 155
then sampled from the training set 1000 random keypoijnts GentleBNI 2.8%+0.1 | 0096 0510 0414 15.6
I H H LinSVM 4.2%+0.4 0.186 0.751 0.565( 16.0
ki, ..., l_floqo- Let {k; } be the set of all ke)_/p_omts assodqi- LinSVYM KO 41%0s | 0172 0749 0578 160
ated with imagd . We represented each training and testjngecm. AdaB 70%L0.9 | 0054 0121 0068 3.4
i qonD I AdaBKO 9.4%+3.0 | 0041 0219 0178 11.4
imagel b); a vector of1000 eIIements.[v (1)....1) (1000)], GentleB 670e1a | 0251 0399 o148 a8
such thav’ () = min;||k; — k; ||. Note that in [11] the use GentleBKO 7.8%+27 | 0031 0302 0271 14.0
H H . GentleBNI 6.7%+1.1 0.268 0.445 0.177 4.0
of the ratio of distances between the clogest and t_hg next LnSVM 29%e16 | 0146 0409 0263 190
closest points were encouraged (and not just the minimum LinSVM KO 34%+2.3 | 0181 0546  0.366 19.0
i iati i ; VINE AdaB 159%t82 | 0128 0.155 0027 38
dlsta_nc_e). For_ our application, Wh|_ch dlsrega_rds all ga(W AGaBKO ool | 0124 0318 o104 112
metric information, we found that using the minimum gives GentleB 17.1%+6.9 | 0.605 0723  0.119 4.2
P ini H _ GentleBKO 12.2%+4.9 0.117 0.324 0.207[ 119
much petter results. For the _testlng and training splits|re GontleBNI 1710026 | 0216 0288 0072 90
ported in [6] we got the following results (ME=mean error, LinSVM 12.5%+9.8 | 0149 0411 0261 13.0
- IR, LiNSVMKO | 157%t85 | 0166 0379 0213 13.0
EqE errprat equilibriumy. YEAST AdaB 3L1%E10 | 0020 0025 0006 24
Algorithm Planes Cars Faces Leaves Motor. AdaBKO 31.3%t1.1 | 0023 0034 0011 46
Lin. SVM ME 0.104 0.019 0.107 0.118 0.033 GentleB 33.9%+5.7 0.329 0.443 0.114 6.4
gentleB ME 0.118 0.036 0.168 0.137 0.02¢ GentleBKO 32.7%+2.6 0.280 0.438 0.158 8.0
genteBKO ME | 0.100 0.033 0.119 0.114  0.023 S‘;g"jﬁ”' gf;‘ﬁﬁgg gggg 86‘8? gégf ;g
Lin. SYMEgE | 0.108 0018 0111 0126  0.00y LiNSVMKO | 31.2%t03 | 0.000 0000 0000, 8.0
gentleB EqE 0.120 0.037 0.166 0.132  0.00
gentleBKO EqE| 0.111 0.030 0.136 0.120  0.008

Table 1:Results for datasets from the UCI repository. Each data ast w
Car type identification. This dataset consists dR0 split to 10% training, 90% testing. The mean error, its staddieviation,
images of private cars, ar&l8 images of mid sized vehi- the mean biased, unbiased and_net variance as WQ” as thenunedoer of
, . . features used are shown for 10 independent experiments.
cles (such as SUV’s). All images aP® x 20 pixels, and
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Figure 3:A comparison using the C2 features between GentleBoost|éBaostKO (Fig. 2), and linear SVM on the five Caltech datsise
Airplanes, Cars, Faces, Leafs and Motorbikes. The graphs e the equilibrium error rate vs. the number of trainirgreples used
from the class we want to detect. In each experiment, thesétstas fixed to be the same as those described it.g8er right corner:
The results of applying the three algorithms to the car tygmsaset, together with example images. The results shogvmean and
standard error a30 independent experiments versus percentile of trainingésa
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